Ransomware Testing Framework



Overview of Ransomware Pattern

Report

o

Server

iswre)

_\f
VR

(E
‘\5

o

/,
<

Client

stealth

[F:ﬁngerprintj

[P: propagate j

[c:c&c j

suspicious

(E:encrypt )

deployment

obvious

(D:delete J

(T : threat )

Fig. 2 Predictive model of ransomware deployment methods
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https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-019-0097-9

Testing Framework Structure

For banks, hospitals, private PC, etc. they store files in their system (our target system).

Ransomware reads files in our target system, encrypt it, then overwrite them(in-place or
delte then create new copies).

The testing framework detects how susceptible the target system is to ransomware.

It collects data in target system (preprocessing), FS filter (VFS in Linux) layer as well as
BIO layer. It also optionally collects data with standardized ransomware to illustrate the
pattern of attack and verify the sanity of other satistics.
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Standardized Ransomware (encryption and deletion)
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Target System (fingerprinting)
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Statistics
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Data Structure
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Basic Implementation



Clone target system, and backup to a safe place



Migrate / Prepare Target System & Preprocess tar_sys_info



Add magic numbers to files in target file system

hello.doc MAGIC_1 hello.doc MAGIC_1 JR—

Hello, World MAGIC_3 wooonoooios MAGIC_3

MAGIC_2 Hello, Wolrd MAGIC_2 Note - MAGIC_ 3 should be

) after ransomware Y i "
add magic number added by (our) testing ransomware

—> |::>

MAGIC number should be 8 bytes (to avoid collision) to help BIO layer gather more
information more easily.



Launch standardized ransomware, with rans_info prepared



When running ransomware

e |n standardized ransomware, fill in stat_fs_filt

e InBIO, fill in stat_BIO.

BIO tracing in Linux


https://www.ibm.com/docs/en/linux-on-systems?topic=blktrace-data-io-requests

Currently implemented

e Target System & Databackup Generation
e Fine-grained Access Control (via ACL)
e Fingerprinting Report

e Ransomware Encryption



TO DO

e BIO dump

e Data backup
o consistency report

o security report (To discuss)

e Propagation



