Ransomware Testing Framework

Overview of Ransomware Pattern

Report

o

Server

iswre)

_\f
VR

(E
‘\5

o

/,
<

Client

stealth

[F:ﬁngerprintj

[P: propagate j

[c:c&c j

suspicious

(E:encrypt)

deployment

obvious

(D:delete J

(T : threat)

Fig. 2 Predictive model of ransomware deployment methods

: E:Higher level

| O:Lower level |

https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-019-0097-9

Testing Framework Structure

For banks, hospitals, private PC, etc. they store files in their system (our target system).

Ransomware reads files in our target system, encrypt it, then overwrite them(in-place or
delte then create new copies).

The testing framework detects how susceptible the target system is to ransomware.

It collects data in target system (preprocessing), FS filter (VFS in Linux) layer as well as
BIO layer. It also optionally collects data with standardized ransomware to illustrate the
pattern of attack and verify the sanity of other satistics.

Application Examples

Bank Hospital

private PC

Applications with Data
Backup Policy

File System
(NTES, F2FS, BtrFS

__

Testing Framwork
Statistics

Standardized Ransomware (encryption and deletion)

Privilege Level

sudo (not likely)

Advanced User Group

Mormal User

10 Freguency

Burst read / write

Write wait write wait ...

Privilege
Level

10 frequency

Ransomware

Target File
Type

RW Class

Read then In-place modify

Read Encrypt Write in another place
Delete Original Copy

Target System (fingerprinting)

Target System

Access

Frequency .
q 3 Control

Data Backup

Backup

e Security
Position =

Security

of AP| exposed

Disk access ¥/ N)

Statistics

of Files

of

Unenerypted Data

File acess Target System Statisics :

Vulnerability ' Performance

Target File
Types

(Linux dentry)

Ransomware Statistics Becoverable

of Files

T

Data Structure

sanity_check_t

rans_info

10_freq_t

typelD

us_per_wait

ops_between_wait

[

rans_info_t

tar_priv

rans_class

10_frequency

k

sanity_check_t (note)

In windows, we can collect
data of real ransomware
to verify that
our standardized ransomware
makes sense.
This data i collected in FS filter

w

tar_file_types

far_path

loff_min

stat_recovery

of files recoverable files

tar_sys_info_t

test_framework_t

tar_sys_info

rans_info

stat_fs_filt

stat_BIO

Y

of inconsistent files

stat_recovery

v

root_path

backup_path

£ files

file_len_distribution

nser groups

MAGIC numbers

stat_ops_main

stat_ops_main

w

stat_ops_backup

stat_BIO

w

encrypted files distr.

encrypted directories distr.

stat_ops_backup

encrypted bytes

v

unencryvpt bytes

encrypted files distr.

encrypted directories distr.

Basic Implementation

Clone target system, and backup to a safe place

Migrate / Prepare Target System & Preprocess tar_sys_info

Add magic numbers to files in target file system

hello.doc MAGIC_1 hello.doc MAGIC_1 JR—

Hello, World MAGIC_3 wooonoooios MAGIC_3

MAGIC_2 Hello, Wolrd MAGIC_2 Note - MAGIC_ 3 should be

) after ransomware Y i "
add magic number added by (our) testing ransomware

—> |::>

MAGIC number should be 8 bytes (to avoid collision) to help BIO layer gather more
information more easily.

Launch standardized ransomware, with rans_info prepared

When running ransomware

e |n standardized ransomware, fill in stat_fs_filt

e InBIO, fill in stat_BIO.

BIO tracing in Linux

https://www.ibm.com/docs/en/linux-on-systems?topic=blktrace-data-io-requests

Currently implemented

e Target System & Databackup Generation
e Fine-grained Access Control (via ACL)
e Fingerprinting Report

e Ransomware Encryption

TO DO

e BIO dump

e Data backup
o consistency report

o security report (To discuss)

e Propagation

